This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AthanasiosVoulodimos
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Inverse tasks can uncover potential reasoning gaps as Large Language Models (LLMs) scale up. In this work, we explore the redefinition task, in which we assign alternative values to well-known physical constants and units of measure, prompting LLMs to respond accordingly. Our findings show that not only does model performance degrade with scale, but its false confidence also rises. Moreover, while factors such as prompting strategies or response formatting are influential, they do not preclude LLMs from anchoring to memorized values.
Multilingual hallucination detection stands as an underexplored challenge, which the Mu-SHROOM shared task seeks to address. In this work, we propose an efficient, training-free LLM prompting strategy that enhances detection by translating multilingual text spans into English. Our approach achieves competitive rankings across multiple languages, securing two first positions in low-resource languages. The consistency of our results highlights the effectiveness of our translation strategy for hallucination detection, demonstrating its applicability regardless of the source language.
The {textit{Unlearning Sensitive Content from Large Language Models}} task aims to remove targeted datapoints from trained models while minimally affecting their general knowledge. In our work, we leverage parameter-efficient, gradient-based unlearning using low-rank (LoRA) adaptation and layer-focused fine-tuning. To further enhance unlearning effectiveness, we employ data chunking, splitting forget data into disjoint partitions and merging them with cyclically sampled retain samples at a pre-defined ratio. Our task-agnostic method achieves an outstanding forget-retain balance, ranking first on leaderboards and significantly outperforming baselines and competing systems.
In this paper, we present our submission to SemEval-2025 Task 8: Question Answering over Tabular Data. This task, evaluated on the DataBench dataset, assesses Large Language Models’ (LLMs) ability to answer natural language questions over structured data while addressing topic diversity and table size limitations in previous benchmarks. We propose a system that employs effective LLM prompting to translate natural language queries into executable code, enabling accurate responses, error correction, and interpretability. Our approach ranks first in both subtasks of the competition in the proprietary model category, significantly outperforming the organizer’s baseline.