Aslak Sira Myhre


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
The Impact of Copyrighted Material on Large Language Models: A Norwegian Perspective
Javier de la Rosa | Vladislav Mikhailov | Lemei Zhang | Freddy Wetjen | David Samuel | Peng Liu | Rolv-Arild Braaten | Petter Mæhlum | Magnus Breder Birkenes | Andrey Kutuzov | Tita Enstad | Hans Christian Farsethås | Svein Arne Brygfjeld | Jon Atle Gulla | Stephan Oepen | Erik Velldal | Wilfred Østgulen | Lilja Øvrelid | Aslak Sira Myhre
Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies (NoDaLiDa/Baltic-HLT 2025)

The use of copyrighted materials in training language models raises critical legal and ethical questions. This paper presents a framework for and the results of empirically assessing the impact of publisher-controlled copyrighted corpora on the performance of generative large language models (LLMs) for Norwegian. When evaluated on a diverse set of tasks, we found that adding both books and newspapers to the data mixture of LLMs tend to improve their performance, while the addition of fiction works seems to be detrimental. Our experiments could inform the creation of a compensation scheme for authors whose works contribute to AI development.