Ashley Prado


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Advancing Uto-Aztecan Language Technologies: A Case Study on the Endangered Comanche Language
Jesus Alvarez C | Daua Karajeanes | Ashley Prado | John Ruttan | Ivory Yang | Sean O’brien | Vasu Sharma | Kevin Zhu
Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP)

The digital exclusion of endangered languages remains a critical challenge in NLP, limiting both linguistic research and revitalization efforts. This study introduces the first computational investigation of Comanche, an Uto-Aztecan language on the verge of extinction, demonstrating how minimal-cost, community-informed NLP interventions can support language preservation. We present a manually curated dataset of 412 phrases, a synthetic data generation pipeline, and an empirical evaluation of GPT-4o and GPT-4o-mini for language identification. Our experiments reveal that while LLMs struggle with Comanche in zero-shot settings, few-shot prompting significantly improves performance, achieving near-perfect accuracy with just five examples. Our findings highlight the potential of targeted NLP methodologies in low-resource contexts and emphasize that visibility is the first step toward inclusion. By establishing a foundation for Comanche in NLP, we advocate for computational approaches that prioritize accessibility, cultural sensitivity, and community engagement.