Ashish Kangen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
DocIE@XLLM25: In-Context Learning for Information Extraction using Fully Synthetic Demonstrations
Nicholas Popovic | Ashish Kangen | Tim Schopf | Michael Färber
Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)

Large, high-quality annotated corpora remain scarce in document-level entity and relation extraction in zero-shot or few-shot settings.In this paper, we present a fully automatic, LLM-based pipeline for synthetic data generation and in-context learning for document-level entity and relation extraction.In contrast to existing approaches that rely on manually annotated demonstrations or direct zero-shot inference, our method combines synthetic data generation with retrieval-based in-context learning, using a reasoning-optimized language model.This allows us to build a high-quality demonstration database without manual annotation and to dynamically retrieve relevant examples at inference time.Based on our approach we produce a synthetic dataset of over 5k Wikipedia abstracts with approximately 59k entities and 30k relation triples.Finally, we evaluate in-context learning performance on the DocIE shared task, extracting entities and relations from long documents in a zero-shot setting.The code and synthetic dataset are made available for future research.