This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ArushiRaghuvanshi
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Automating benefit verification phone calls saves time in healthcare and helps patients receive treatment faster. It is critical to obtain highly accurate information in these phone calls, as it can affect a patient’s healthcare journey. Given the noise in phone call transcripts, we have a two-stage system that involves a post-call review phase for potentially noisy fields, where human reviewers manually verify the extracted data—a labor-intensive task. To automate this stage, we introduce Auto Review, which significantly reduces manual effort while maintaining a high bar for accuracy. This system, being highly reliant on call transcripts, suffers a performance bottleneck due to automatic speech recognition (ASR) issues. This problem is further exacerbated by the use of domain-specific jargon in the calls. In this work, we propose a second-stage postprocessing pipeline for accurate information extraction. We improve accuracy by using multiple ASR alternatives and a pseudo-labeling approach that does not require manually corrected transcripts. Experiments with general-purpose large language models and feature-based model pipelines demonstrate substantial improvements in the quality of corrected call transcripts, thereby enhancing the efficiency of Auto Review.
Detecting dialogue breakdown in real time is critical for conversational AI systems, because it enables taking corrective action to successfully complete a task. In spoken dialog systems, this breakdown can be caused by a variety of unexpected situations including high levels of background noise, causing STT mistranscriptions, or unexpected user flows.In particular, industry settings like healthcare, require high precision and high flexibility to navigate differently based on the conversation history and dialogue states. This makes it both more challenging and more critical to accurately detect dialog breakdown. To accurately detect breakdown, we found it requires processing audio inputs along with downstream NLP model inferences on transcribed text in real time. In this paper, we introduce a Multimodal Contextual Dialogue Breakdown (MultConDB) model. This model significantly outperforms other known best models by achieving an F1 of 69.27.
Current Conversational AI systems employ different machine learning pipelines, as well as external knowledge sources and business logic to predict the next action. Maintaining various components in dialogue managers’ pipeline adds complexity in expansion and updates, increases processing time, and causes additive noise through the pipeline that can lead to incorrect next action prediction. This paper investigates graph integration into language transformers to improve understanding the relationships between humans’ utterances, previous, and next actions without the dependency on external sources or components. Experimental analyses on real calls indicate that the proposed Graph Integrated Language Transformer models can achieve higher performance compared to other production level conversational AI systems in driving interactive calls with human users in real-world settings.
Task-oriented dialogues often require agents to enact complex, multi-step procedures in order to meet user requests. While large language models have found success automating these dialogues in constrained environments, their widespread deployment is limited by the substantial quantities of task-specific data required for training. The following paper presents a data-efficient solution to constructing dialogue systems, leveraging explicit instructions derived from agent guidelines, such as company policies or customer service manuals. Our proposed Knowledge-Augmented Dialogue System (KADS) combines a large language model with a knowledge retrieval module that pulls documents outlining relevant procedures from a predefined set of policies, given a user-agent interaction. To train this system, we introduce a semi-supervised pre-training scheme that employs dialogue-document matching and action-oriented masked language modeling with partial parameter freezing. We evaluate the effectiveness of our approach on prominent task-oriented dialogue datasets, Action-Based Conversations Dataset and Schema-Guided Dialogue, for two dialogue tasks: action state tracking and workflow discovery. Our results demonstrate that procedural knowledge augmentation improves accuracy predicting in- and out-of-distribution actions while preserving high performance in settings with low or sparse data.
Large vocabulary domain-agnostic Automatic Speech Recognition (ASR) systems often mistranscribe domain-specific words and phrases. Since these generic ASR systems are the first component of most voice assistants in production, building Natural Language Understanding (NLU) systems that are robust to these errors can be a challenging task. In this paper, we focus on handling ASR errors in named entities, specifically person names, for a voice-based collaboration assistant. We demonstrate an effective method for resolving person names that are mistranscribed by black-box ASR systems, using character and phoneme-based information retrieval techniques and contextual information, which improves accuracy by 40.8% on our production system. We provide a live interactive demo to further illustrate the nuances of this problem and the effectiveness of our solution.
We demonstrate an end-to-end approach for building conversational interfaces from prototype to production that has proven to work well for a number of applications across diverse verticals. Our architecture improves on the standard domain-intent-entity classification hierarchy and dialogue management architecture by leveraging shallow semantic parsing. We observe that NLU systems for industry applications often require more structured representations of entity relations than provided by the standard hierarchy, yet without requiring full semantic parses which are often inaccurate on real-world conversational data. We distinguish two kinds of semantic properties that can be provided through shallow semantic parsing: entity groups and entity roles. We also provide live demos of conversational apps built for two different use cases: food ordering and meeting control.