Arooj Kiyani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
FJWU_Squad at SemEval-2025 Task 1: An Idiom Visual Understanding Dataset for Idiom Learning
Maira Khatoon | Arooj Kiyani | Tehmina Farid | Sadaf Abdul Rauf
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

Idiomatic expressions pose difficulties for Natural Language Processing (NLP) because they are noncompositional. In this paper, we propose the Idiom Visual Understanding Dataset (IVUD), a multimodal dataset for idiom understanding using visual and textual representation. For SemEval-2025 Task 1 (AdMIRe), we specifically addressed dataset augmentation using AI-synthesized images and human-directed prompt engineering. We compared the efficacy of vision- and text-based models in ranking images aligned with idiomatic phrases. The results identify the advantages of using multimodal context for enhanced idiom understanding, showcasing how vision-language models perform better than text-only approaches in the detection of idiomaticity.