Arjan van Eerden


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Slaapte or Sliep? Extending Neural-Network Simulations of English Past Tense Learning to Dutch and German
Xiulin Yang | Jingyan Chen | Arjan van Eerden | Ahnaf Samin | Arianna Bisazza
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

This work studies the plausibility of sequence-to-sequence neural networks as models of morphological acquisition by humans. We replicate the findings of Kirov and Cotterell (2018) on the well-known challenge of the English past tense and examine their generalizability to two related but morphologically richer languages, namely Dutch and German. Using a new dataset of English/Dutch/German (ir)regular verb forms, we show that the major findings of Kirov and Cotterell (2018) hold for all three languages, including the observation of over-regularization errors and micro U-shape learning trajectories. At the same time, we observe troublesome cases of non human-like errors similar to those reported by recent follow-up studies with different languages or neural architectures. Finally, we study the possibility of switching to orthographic input in the absence of pronunciation information and show this can have a non-negligible impact on the simulation results, with possibly misleading findings.