Arianna Patrizi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
The Dark Side of the Language: Pre-trained Transformers in the DarkNet
Leonardo Ranaldi | Aria Nourbakhsh | Elena Sofia Ruzzetti | Arianna Patrizi | Dario Onorati | Michele Mastromattei | Francesca Fallucchi | Fabio Massimo Zanzotto
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Pre-trained Transformers are challenging human performances in many Natural Language Processing tasks. The massive datasets used for pre-training seem to be the key to their success on existing tasks. In this paper, we explore how a range of pre-trained natural language understanding models performs on definitely unseen sentences provided by classification tasks over a DarkNet corpus. Surprisingly, results show that syntactic and lexical neural networks perform on par with pre-trained Transformers even after fine-tuning. Only after what we call extreme domain adaptation, that is, retraining with the masked language model task on all the novel corpus, pre-trained Transformers reach their standard high results. This suggests that huge pre-training corpora may give Transformers unexpected help since they are exposed to many of the possible sentences.