This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ApurbaPaul
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Mythology is a collection of myths, especially one belonging to a particular religious or cultural tradition. We observed that an annotation tool is essential to identify important and complex information from any mythological texts or corpora. Additionally, obtaining highquality annotated corpora for complex information extraction including labeled text segments is an expensive and timeconsuming process. Hence, in this paper, we have designed and deployed an annotation tool for Hindu mythology which is presented as Mytho-Annotator. Its easy-to-use web-based text annotation tool is powered by Natural Language Processing (NLP). This tool primarily labels three different categories such as named entities, relationships, and event entities. This annotation tool offers a comprehensive and adaptable annotation paradigm.
The present paper describes the identification of prominent characters and their adjectives from Indian mythological epic, Mahabharata, written in English texts. However, in contrast to the tra-ditional approaches of named entity identifica-tion, the present system extracts hidden attributes associated with each of the characters (e.g., character adjectives). We observed distinct phrase level linguistic patterns that hint the pres-ence of characters in different text spans. Such six patterns were used in order to extract the cha-racters. On the other hand, a distinguishing set of novel features (e.g., multi-word expression, nodes and paths of parse tree, immediate ancestors etc.) was employed. Further, the correlation of the features is also measured in order to identify the important features. Finally, we applied various machine learning algorithms (e.g., Naive Bayes, KNN, Logistic Regression, Decision Tree, Random Forest etc.) along with deep learning to classify the patterns as characters or non-characters in order to achieve decent accuracy. Evaluation shows that phrase level linguistic patterns as well as the adopted features are highly active in capturing characters and their adjectives.