Anurendra Kumar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
CoVA: Context-aware Visual Attention for Webpage Information Extraction
Anurendra Kumar | Keval Morabia | William Wang | Kevin Chang | Alex Schwing
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

Webpage information extraction (WIE) is an important step to create knowledge bases. For this, classical WIE methods leverage the Document Object Model (DOM) tree of a website. However, use of the DOM tree poses significant challenges as context and appearance are encoded in an abstract manner. To address this challenge we propose to reformulate WIE as a context-aware Webpage Object Detection task. Specifically, we develop a Context-aware Visual Attention-based (CoVA) detection pipeline which combines appearance features with syntactical structure from the DOM tree. To study the approach we collect a new large-scale datase of e-commerce websites for which we manually annotate every web element with four labels: product price, product title, product image and others. On this dataset we show that the proposed CoVA approach is a new challenging baseline which improves upon prior state-of-the-art methods.