Anupama Kaushik


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
MSIT_SRIB at MEDIQA 2019: Knowledge Directed Multi-task Framework for Natural Language Inference in Clinical Domain.
Sahil Chopra | Ankita Gupta | Anupama Kaushik
Proceedings of the 18th BioNLP Workshop and Shared Task

In this paper, we present Biomedical Multi-Task Deep Neural Network (Bio-MTDNN) on the NLI task of MediQA 2019 challenge. Bio-MTDNN utilizes “transfer learning” based paradigm where not only the source and target domains are different but also the source and target tasks are varied, although related. Further, Bio-MTDNN integrates knowledge from external sources such as clinical databases (UMLS) enhancing its performance on the clinical domain. Our proposed method outperformed the official baseline and other prior models (such as ESIM and Infersent on dev set) by a considerable margin as evident from our experimental results.