Antu Chowdhury


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
CUETSentimentSillies@DravidianLangTech-EACL2024: Transformer-based Approach for Sentiment Analysis in Tamil and Tulu Code-Mixed Texts
Zannatul Tripty | Md. Nafis | Antu Chowdhury | Jawad Hossain | Shawly Ahsan | Avishek Das | Mohammed Moshiul Hoque
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Sentiment analysis (SA) on social media reviews has become a challenging research agenda in recent years due to the exponential growth of textual content. Although several effective solutions are available for SA in high-resourced languages, it is considered a critical problem for low-resourced languages. This work introduces an automatic system for analyzing sentiment in Tamil and Tulu code-mixed languages. Several ML (DT, RF, MNB), DL (CNN, BiLSTM, CNN+BiLSTM), and transformer-based models (Indic-BERT, XLM-RoBERTa, m-BERT) are investigated for SA tasks using Tamil and Tulu code-mixed textual data. Experimental outcomes reveal that the transformer-based models XLM-R and m-BERT surpassed others in performance for Tamil and Tulu, respectively. The proposed XLM-R and m-BERT models attained macro F1-scores of 0.258 (Tamil) and 0.468 (Tulu) on test datasets, securing the 2nd and 5th positions, respectively, in the shared task.

pdf bib
CUETSentimentSillies@DravidianLangTech EACL2024: Transformer-based Approach for Detecting and Categorizing Fake News in Malayalam Language
Zannatul Tripty | Md. Nafis | Antu Chowdhury | Jawad Hossain | Shawly Ahsan | Mohammed Moshiul Hoque
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

Fake news misleads people and may lead to real-world miscommunication and injury. Removing misinformation encourages critical thinking, democracy, and the prevention of hatred, fear, and misunderstanding. Identifying and removing fake news and developing a detection system is essential for reliable, accurate, and clear information. Therefore, a shared task was organized to detect fake news in Malayalam. This paper presents a system developed for the shared task of detecting and classifying fake news in Malayalam. The approach involves a combination of machine learning models (LR, DT, RF, MNB), deep learning models (CNN, BiLSTM, CNN+BiLSTM), and transformer-based models (Indic-BERT, XLMR, Malayalam-BERT, m-BERT) for both subtasks. The experimental results demonstrate that transformer-based models, specifically m- BERT and Malayalam-BERT, outperformed others. The m-BERT model achieved superior performance in subtask 1 with macro F1-scores of 0.84, and Malayalam-BERT outperformed the other models in subtask 2 with macro F1- scores of 0.496, securing us the 5th and 2nd positions in subtask 1 and subtask 2, respectively.