This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AntonioMoreno-Ortiz
Univ. of Málaga
Also published as:
Antonio Moreno Ortiz,
Antonio Moreno
In this paper we present, describe, and evaluate SentiEcon, a large, comprehensive, domain-specific computational lexicon designed for sentiment analysis applications, for which we compiled our own corpus of online business news. SentiEcon was created as a plug-in lexicon for the sentiment analysis tool Lingmotif, and thus it follows its data structure requirements and presupposes the availability of a general-language core sentiment lexicon that covers non-specific sentiment-carrying terms and phrases. It contains 6,470 entries, both single and multi-word expressions, each with tags denoting their semantic orientation and intensity. We evaluate SentiEcon’s performance by comparing results in a sentence classification task using exclusively sentiment words as features. This sentence dataset was extracted from business news texts, and included certain key words known to recurrently convey strong semantic orientation, such as “debt”, “inflation” or “markets”. The results show that performance is significantly improved when adding SentiEcon to the general-language sentiment lexicon.
Lingmotif is a lexicon-based, linguistically-motivated, user-friendly, GUI-enabled, multi-platform, Sentiment Analysis desktop application. Lingmotif can perform SA on any type of input texts, regardless of their length and topic. The analysis is based on the identification of sentiment-laden words and phrases contained in the application’s rich core lexicons, and employs context rules to account for sentiment shifters. It offers easy-to-interpret visual representations of quantitative data (text polarity, sentiment intensity, sentiment profile), as well as a detailed, qualitative analysis of the text in terms of its sentiment. Lingmotif can also take user-provided plugin lexicons in order to account for domain-specific sentiment expression. Lingmotif currently analyzes English and Spanish texts.
In this paper we describe Tecnolengua Group’s participation in the shared task on emotion intensity at WASSA 2017. We used the Lingmotif tool and a new, complementary tool, Lingmotif Learn, which we developed for this occasion. We based our intensity predictions for the four test datasets entirely on Lingmotif’s TSS (text sentiment score) feature. We also developed mechanisms for dealing with the idiosyncrasies of Twitter text. Results were comparatively poor, but the experience meant a good opportunity for us to identify issues in our score calculation for short texts, a genre for which the Lingmotif tool was not originally designed.