Antonia Baumann


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Multilingual Language Models for Named Entity Recognition in German and English
Antonia Baumann
Proceedings of the Student Research Workshop Associated with RANLP 2019

We assess the language specificity of recent language models by exploring the potential of a multilingual language model. In particular, we evaluate Google’s multilingual BERT (mBERT) model on Named Entity Recognition (NER) in German and English. We expand the work on language model fine-tuning by Howard and Ruder (2018), applying it to the BERT architecture. We successfully reproduce the NER results published by Devlin et al. (2019).Our results show that the multilingual language model generalises well for NER in the chosen languages, matching the native model in English and comparing well with recent approaches for German. However, it does not benefit from the added fine-tuning methods.
Search
Co-authors
    Venues
    Fix data