Anoop Shah


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Error Detection in Medical Note through Multi Agent Debate
Abdine Maiga | Anoop Shah | Emine Yilmaz
Proceedings of the 24th Workshop on Biomedical Language Processing

Large Language Models (LLMs) have approached human-level performance in text generation and summarization, yet their application in clinical settings remains constrained by potential inaccuracies that could lead to serious consequences. This work addresses the critical safety weaknesses in medical documentation systems by focusing on detecting subtle errors that require specialized medical expertise. We introduce a novel multi-agent debating framework that achieves 78.8% accuracy on medical error detection, significantly outperforming both single-agent approaches and previous multi-agent systems. Our framework leverages specialized LLM agents with asymmetric access to complementary medical knowledge sources (Mayo Clinic and WebMD), engaging them in structured debate to identify inaccuracies in clinical notes. A judge agent evaluates these arguments based solely on their medical reasoning quality, with agent-specific performance metrics incorporated as feedback for developing situation-specific trust models.