Anna Groundwater


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Building a dual dataset of text- and image-grounded conversations and summarisation in Gàidhlig (Scottish Gaelic)
David M. Howcroft | William Lamb | Anna Groundwater | Dimitra Gkatzia
Proceedings of the 16th International Natural Language Generation Conference

Gàidhlig (Scottish Gaelic; gd) is spoken by about 57k people in Scotland, but remains an under-resourced language with respect to natural language processing in general and natural language generation (NLG) in particular. To address this gap, we developed the first datasets for Scottish Gaelic NLG, collecting both conversational and summarisation data in a single setting. Our task setup involves dialogues between a pair of speakers discussing museum exhibits, grounding the conversation in images and texts. Then, both interlocutors summarise the dialogue resulting in a secondary dialogue summarisation dataset. This paper presents the dialogue and summarisation corpora, as well as the software used for data collection. The corpus consists of 43 conversations (13.7k words) and 61 summaries (2.0k words), and will be released along with the data collection interface.