Anna Eigenmann


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
RankQA: Neural Question Answering with Answer Re-Ranking
Bernhard Kratzwald | Anna Eigenmann | Stefan Feuerriegel
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The conventional paradigm in neural question answering (QA) for narrative content is limited to a two-stage process: first, relevant text passages are retrieved and, subsequently, a neural network for machine comprehension extracts the likeliest answer. However, both stages are largely isolated in the status quo and, hence, information from the two phases is never properly fused. In contrast, this work proposes RankQA: RankQA extends the conventional two-stage process in neural QA with a third stage that performs an additional answer re-ranking. The re-ranking leverages different features that are directly extracted from the QA pipeline, i.e., a combination of retrieval and comprehension features. While our intentionally simple design allows for an efficient, data-sparse estimation, it nevertheless outperforms more complex QA systems by a significant margin: in fact, RankQA achieves state-of-the-art performance on 3 out of 4 benchmark datasets. Furthermore, its performance is especially superior in settings where the size of the corpus is dynamic. Here the answer re-ranking provides an effective remedy against the underlying noise-information trade-off due to a variable corpus size. As a consequence, RankQA represents a novel, powerful, and thus challenging baseline for future research in content-based QA.