Ankita Anand


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Leveraging LLM For Synchronizing Information Across Multilingual Tables
Siddharth Khincha | Tushar Kataria | Ankita Anand | Dan Roth | Vivek Gupta
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The vast amount of online information today poses challenges for non-English speakers, as much of it is concentrated in high-resource languages such as English and French. Wikipedia reflects this imbalance, with content in low-resource languages frequently outdated or incomplete. Recent research has sought to improve cross-language synchronization of Wikipedia tables using rule-based methods. These approaches can be effective, but they struggle with complexity and generalization. This paper explores large language models (LLMs) for multilingual information synchronization, using zero-shot prompting as a scalable solution. We introduce the Information Updation dataset, simulating the real-world process of updating outdated Wikipedia tables, and evaluate LLM performance. Our findings reveal that single-prompt approaches often produce suboptimal results, prompting us to introduce a task decomposition strategy that enhances coherence and accuracy. Our proposed method outperforms existing baselines, particularly in Information Updation (1.79%) and Information Addition (20.58%), highlighting the model’s strength in dynamically updating and enriching data across architectures.