Anika Binte Islam


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Offensive Language Identification in Transliterated and Code-Mixed Bangla
Md Nishat Raihan | Umma Tanmoy | Anika Binte Islam | Kai North | Tharindu Ranasinghe | Antonios Anastasopoulos | Marcos Zampieri
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

Identifying offensive content in social media is vital to create safe online communities. Several recent studies have addressed this problem by creating datasets for various languages. In this paper, we explore offensive language identification in texts with transliterations and code-mixing, linguistic phenomena common in multilingual societies, and a known challenge for NLP systems. We introduce TB-OLID, a transliterated Bangla offensive language dataset containing 5,000 manually annotated comments. We train and fine-tune machine learning models on TB-OLID, and we evaluate their results on this dataset. Our results show that English pre-trained transformer-based models, such as fBERT and HateBERT achieve the best performance on this dataset.