Andrew Wen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ReasonerRank: Redefining Language Model Evaluation with Ground-Truth-Free Ranking Frameworks
Jiamu Zhang | Jiayi Yuan | Andrew Wen | Hoang Anh Duy Le | Yu-Neng Chuang | Soo-Hyun Choi | Rui Chen | Xia Hu
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) are increasingly adopted across real-world applications, yet traditional evaluations rely on expensive, domain-specific ground-truth labels that are often unavailable or infeasible. We introduce a ground-truth-free evaluation framework focused on reasoning consistency and instruction following, shifting the emphasis from correctness—which is elusive without labels—to transparent, coherent, evidence-based reasoning. Each model response must include a direct answer, a structured multi-step explanation, and supporting evidence, all assessed via semantic similarity and output adherence checks. We further propose TopK-ReRank, which refines rankings by constructing a consensus answer from the most reliable models, reducing ambiguity across diverse reasoning styles. Experiments show that our framework outperforms existing label-free methods, including majority voting, triplet ranking, and peer-review approaches, providing a more interpretable and efficient alternative for evaluating LLMs in the absence of ground-truth labels.