Andrew Frank


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Pivot Through English: Reliably Answering Multilingual Questions without Document Retrieval
Ivan Montero | Shayne Longpre | Ni Lao | Andrew Frank | Christopher DuBois
Proceedings of the Workshop on Multilingual Information Access (MIA)

Existing methods for open-retrieval question answering in lower resource languages (LRLs) lag significantly behind English. They not only suffer from the shortcomings of non-English document retrieval, but are reliant on language-specific supervision for either the task or translation. We formulate a task setup more realistic to available resources, that circumvents document retrieval to reliably transfer knowledge from English to lower resource languages. Assuming a strong English question answering model or database, we compare and analyze methods that pivot through English: to map foreign queries to English and then English answers back to target language answers. Within this task setup we propose Reranked Multilingual Maximal Inner Product Search (RM-MIPS), akin to semantic similarity retrieval over the English training set with reranking, which outperforms the strongest baselines by 2.7% on XQuAD and 6.2% on MKQA. Analysis demonstrates the particular efficacy of this strategy over state-of-the-art alternatives in challenging settings: low-resource languages, with extensive distractor data and query distribution misalignment. Circumventing retrieval, our analysis shows this approach offers rapid answer generation to many other languages off-the-shelf, without necessitating additional training data in the target language.

2018

pdf bib
Building Literary Corpora for Computational Literary Analysis - A Prototype to Bridge the Gap between CL and DH
Andrew Frank | Christine Ivanovic
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)