This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AndrewFinch
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The prosody of a spoken utterance, including features like stress, intonation and rhythm, can significantly affect the underlying semantics, and as a consequence can also affect its textual translation. Nevertheless, prosody is rarely studied within the context of speech-to-text translation (S2TT) systems. In particular, end-to-end (E2E) systems have been proposed as well-suited for prosody-aware translation because they have direct access to the speech signal when making translation decisions, but the understanding of whether this is successful in practice is still limited. A main challenge is the difficulty of evaluating prosody awareness in translation. To address this challenge, we introduce an evaluation methodology and a focused benchmark (named ContraProSt) aimed at capturing a wide range of prosodic phenomena. Our methodology uses large language models and controllable text-to-speech (TTS) to generate contrastive examples. Through experiments in translating English speech into German, Spanish, and Japanese, we find that (a) S2TT models possess some internal representation of prosody, but the prosody signal is often not strong enough to affect the translations, (b) E2E systems outperform cascades of speech recognition and text translation systems, confirming their theoretical advantage in this regard, and (c) certain cascaded systems also capture prosodic information in the translation, but only to a lesser extent that depends on the particulars of the transcript’s surface form.
We describe the finding of the Fourth Workshop on Neural Generation and Translation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2020). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the three shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document-level generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language and 3) STAPLE task: creation of as many possible translations of a given input text. This last shared task was organised by Duolingo.
This document describes the findings of the Third Workshop on Neural Generation and Translation, held in concert with the annual conference of the Empirical Methods in Natural Language Processing (EMNLP 2019). First, we summarize the research trends of papers presented in the proceedings. Second, we describe the results of the two shared tasks 1) efficient neural machine translation (NMT) where participants were tasked with creating NMT systems that are both accurate and efficient, and 2) document generation and translation (DGT) where participants were tasked with developing systems that generate summaries from structured data, potentially with assistance from text in another language.
This document describes the findings of the Second Workshop on Neural Machine Translation and Generation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2018). First, we summarize the research trends of papers presented in the proceedings, and note that there is particular interest in linguistic structure, domain adaptation, data augmentation, handling inadequate resources, and analysis of models. Second, we describe the results of the workshop’s shared task on efficient neural machine translation, where participants were tasked with creating MT systems that are both accurate and efficient.
Although new corpora are becoming increasingly available for machine translation, only those that belong to the same or similar domains are typically able to improve translation performance. Recently Neural Machine Translation (NMT) has become prominent in the field. However, most of the existing domain adaptation methods only focus on phrase-based machine translation. In this paper, we exploit the NMT’s internal embedding of the source sentence and use the sentence embedding similarity to select the sentences which are close to in-domain data. The empirical adaptation results on the IWSLT English-French and NIST Chinese-English tasks show that the proposed methods can substantially improve NMT performance by 2.4-9.0 BLEU points, outperforming the existing state-of-the-art baseline by 2.3-4.5 BLEU points.
The attention mechanism is appealing for neural machine translation, since it is able to dynamically encode a source sentence by generating a alignment between a target word and source words. Unfortunately, it has been proved to be worse than conventional alignment models in alignment accuracy. In this paper, we analyze and explain this issue from the point view of reordering, and propose a supervised attention which is learned with guidance from conventional alignment models. Experiments on two Chinese-to-English translation tasks show that the supervised attention mechanism yields better alignments leading to substantial gains over the standard attention based NMT.
Simultaneous interpretation allows people to communicate spontaneously across language boundaries, but such services are prohibitively expensive for the general public. This paper presents a fully automatic simultaneous interpretation system to address this problem. Though the development is still at an early stage, the system is capable of keeping up with the fastest of the TED speakers while at the same time delivering high-quality translations. We believe that the system will become an effective tool for facilitating cross-lingual communication in the future.
This paper introduces the ALT project initiated by the Advanced Speech Translation Research and Development Promotion Center (ASTREC), NICT, Kyoto, Japan. The aim of this project is to accelerate NLP research for Asian languages such as Indonesian, Japanese, Khmer, Laos, Malay, Myanmar, Philippine, Thai and Vietnamese. The original resource for this project was English articles that were randomly selected from Wikinews. The project has so far created a corpus for Myanmar and will extend in scope to include other languages in the near future. A 20000-sentence corpus of Myanmar that has been manually translated from an English corpus has been word segmented, word aligned, part-of-speech tagged and constituency parsed by human annotators. In this paper, we present the implementation steps for creating the treebank in detail, including a description of the ALT web-based treebanking tool. Moreover, we report statistics on the annotation quality of the Myanmar treebank created so far.
Simultaneous interpretation is a very challenging application of machine translation in which the input is a stream of words from a speech recognition engine. The key problem is how to segment the stream in an online manner into units suitable for translation. The segmentation process proceeds by calculating a confidence score for each word that indicates the soundness of placing a sentence boundary after it, and then heuristics are employed to determine the position of the boundaries. Multiple variants of the confidence scoring method and segmentation heuristics were studied. Experimental results show that the best performing strategy is not only efficient in terms of average latency per word, but also achieved end-to-end translation quality close to an offline baseline, and close to oracle segmentation.
This paper describes NICT’s participation in the IWSLT 2014 evaluation campaign for the TED Chinese-English translation shared-task. Our approach used a combination of phrase-based and hierarchical statistical machine translation (SMT) systems. Our focus was in several areas, specifically system combination, word alignment, and various language modeling techniques including the use of neural network joint models. Our experiments on the test set from the 2013 shared task, showed that an improvement in BLEU score can be gained in translation performance through all of these techniques, with the largest improvements coming from using large data sizes to train the language model.
We conduct dependency-based head finalization for statistical machine translation (SMT) for Myanmar (Burmese). Although Myanmar is an understudied language, linguistically it is a head-final language with similar syntax to Japanese and Korean. So, applying the efficient techniques of Japanese and Korean processing to Myanmar is a natural idea. Our approach is a combination of two approaches. The first is a head-driven phrase structure grammar (HPSG) based head finalization for English-to-Japanese translation, the second is dependency-based pre-ordering originally designed for English-to-Korean translation. We experiment on Chinese-, English-, and French-to-Myanmar translation, using a statistical pre-ordering approach as a comparison method. Experimental results show the dependency-based head finalization was able to consistently improve a baseline SMT system, for different source languages and different segmentation schemes for the Myanmar language.
In this paper we explore segmentation strategies for the stream decoder a method for decoding from a continuous stream of input tokens, rather than the traditional method of decoding from sentence segmented text. The behavior of the decoder is analyzed and modifications to the decoding algorithm are proposed to improve its performance. The experimental results show our proposed decoding strategies to be effective, and add support to the original findings that this approach is capable of approaching the performance of the underlying phrase-based machine translation decoder, at useful levels of latency. Our experiments evaluated the stream decoder on a broader set of language pairs than in previous work. We found most European language pairs were similar in character, and report results on English-Chinese and English-German pairs which are of interest due to the reordering required.
This paper describes NICT’s participation in the IWSLT 2011 evaluation campaign for the TED speech translation ChineseEnglish shared-task. Our approach was based on a phrasebased statistical machine translation system that was augmented in two ways. Firstly we introduced rule-based re-ordering constraints on the decoding. This consisted of a set of rules that were used to segment the input utterances into segments that could be decoded almost independently. This idea here being that constraining the decoding process in this manner would greatly reduce the search space of the decoder, and cut out many possibilities for error while at the same time allowing for a correct output to be generated. The rules we used exploit punctuation and spacing in the input utterances, and we use these positions to delimit our segments. Not all punctuation/spacing positions were used as segment boundaries, and the set of used positions were determined by a set of linguistically-based heuristics. Secondly we used two heterogeneous methods to build the translation model, and lexical reordering model for our systems. The first method employed the popular method of using GIZA++ for alignment in combination with phraseextraction heuristics. The second method used a recentlydeveloped Bayesian alignment technique that is able to perform both phrase-to-phrase alignment and phrase pair extraction within a single unsupervised process. The models produced by this type of alignment technique are typically very compact whilst at the same time maintaining a high level of translation quality. We evaluated both of these methods of translation model construction in isolation, and our results show their performance is comparable. We also integrated both models by linear interpolation to obtain a model that outperforms either component. Finally, we added an indicator feature into the log-linear model to indicate those phrases that were in the intersection of the two translation models. The addition of this feature was also able to provide a small improvement in performance.
In this paper we describe some of our recent investigations into ASR and SMT coupling issues from an ASR perspective. Our study was motivated by several areas: Firstly, to understand how standard ASR tuning procedures effect the SMT performance and whether it is safe to perform this tuning in isolation. Secondly, to investigate how vocabulary and segmentation mismatches between the ASR and SMT system effect the performance. Thirdly, to uncover any practical issues that arise when using a WFST based speech decoder for tight coupling as opposed to a more traditional tree-search decoding architecture. On the IWSLT07 Japanese-English task we found that larger language model weights only helped the SMT performance when the ASR decoder was tuned in a sub-optimal manner. When we considered the performance with suitable wide beams that ensured the ASR accuracy had converged we observed the language model weight had little influence on the SMT BLEU scores. After the construction of the phrase table the actual SMT vocabulary can be less than the training data vocabulary. By reducing the ASR lexicon to only cover the words the SMT system could accept, we found this lead to an increase in the ASR error rates, however the SMT BLEU scores were nearly unchanged. From a practical point of view this is a useful result as it means we can significantly reduce the memory footprint of the ASR system. We also investigated coupling WFST based ASR to a simple WFST based translation decoder and found it was crucial to perform phrase table expansion to avoid OOV problems. For the WFST translation decoder we describe a semiring based approach for optimizing the log-linear weights.
This paper describes NICT’s participation in the IWSLT 2010 evaluation campaign for the DIALOG translation (Chinese-English) and the BTEC (French-English) translation shared-tasks. For the DIALOG translation, the main challenge to this task is applying context information during translation. Context information can be used to decide on word choice and also to replace missing information during translation. We applied discriminative reranking using contextual information as additional features. In order to provide more choices for re-ranking, we generated n-best lists from multiple phrase-based statistical machine translation systems that varied in the type of Chinese word segmentation schemes used. We also built a model that merged the phrase tables generated by the different segmentation schemes. Furthermore, we used a lattice-based system combination model to combine the output from different systems. A combination of all of these systems was used to produce the n-best lists for re-ranking. For the BTEC task, a general approach that used latticebased system combination of two systems, a standard phrasebased system and a hierarchical phrase-based system, was taken. We also tried to process some unknown words by replacing them with the same words but different inflections that are known to the system.
This paper describes the National Institute of Information and Communications Technology/Advanced Telecommunications Research Institute International (NICT/ATR) statistical machine translation (SMT) system used for the IWSLT 2008 evaluation campaign. We participated in the Chinese–English (Challenge Task), English–Chinese (Challenge Task), Chinese–English (BTEC Task), Chinese–Spanish (BTEC Task), and Chinese–English–Spanish (PIVOT Task) translation tasks. In the English–Chinese translation Challenge Task, we focused on exploring various factors for the English–Chinese translation because the research on the translation of English–Chinese is scarce compared to the opposite direction. In the Chinese–English translation Challenge Task, we employed a novel clustering method, where training sentences similar to the development data in terms of the word error rate formed a cluster. In the pivot translation task, we integrated two strategies for pivot translation by linear interpolation.
This paper describes the NiCT-ATR statistical machine translation (SMT) system used for the IWSLT 2007 evaluation campaign. We participated in three of the four language pair translation tasks (CE, JE, and IE). We used a phrase-based SMT system using log-linear feature models for all tracks. This year we decoded from the ASR n-best lists in the JE track and found a gain in performance. We also applied some new techniques to facilitate the use of out-of-domain external resources by model combination and also by utilizing a huge corpus of n-grams provided by Google Inc.. Using these resources gave mixed results that depended on the technique also the language pair however, in some cases we achieved consistently positive results. The results from model-interpolation in particular were very promising.