Andrew C Yao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Hierarchical Attention Generates Better Proofs
Jianlong Chen | Chao Li | Yang Yuan | Andrew C Yao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce Hierarchical Attention, a regularization method that aligns LLMs’ attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05% on miniF2F and 1.69% on ProofNet while reducing proof complexity by 23.81% and 16.50% respectively. The code and models will be available.

pdf bib
Autonomous Data Selection with Zero-shot Generative Classifiers for Mathematical Texts
Yifan Zhang | Yifan Luo | Yang Yuan | Andrew C Yao
Findings of the Association for Computational Linguistics: ACL 2025

We present Autonomous Data Selection (AutoDS), a method that leverages base language models as zero-shot “generative classifiers” to automatically curate high-quality mathematical texts. Unlike prior approaches that require human annotations or training a dedicated data filter, AutoDS relies solely on a model’s logits to determine whether a given passage is mathematically informative and educational. By integrating AutoDS into a continual pretraining pipeline, we substantially boost downstream performance on challenging math benchmarks (MATH, GSM8K, and BBH) while using far fewer tokens than previous methods. Empirically, our approach achieves roughly a twofold improvement in pretraining token efficiency over strong baselines, underscoring the potential of self-directed data selection in enhancing mathematical reasoning. We will release our curated dataset to facilitate future research in automated domain-specific data curation.