Andrés Segura-Tinoco


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Dimensionality Reduction for Machine Learning-based Argument Mining
Andrés Segura-Tinoco | Iván Cantador
Proceedings of the 10th Workshop on Argument Mining

Recent approaches to argument mining have focused on training machine learning algorithms from annotated text corpora, utilizing as input high-dimensional linguistic feature vectors. Differently to previous work, in this paper, we preliminarily investigate the potential benefits of reducing the dimensionality of the input data. Through an empirical study, testing SVD, PCA and LDA techniques on a new argumentative corpus in Spanish for an underexplored domain (e-participation), and using a novel, rich argument model, we show positive results in terms of both computation efficiency and argumentative information extraction effectiveness, for the three major argument mining tasks: argumentative fragment detection, argument component classification, and argumentative relation recognition. On a space with dimension around 3-4% of the number of input features, the argument mining methods are able to reach 95-97% of the performance achieved by using the entire corpus, and even surpass it in some cases.