Andrei Andriiainen


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Quantifying Logical Consistency in Transformers via Query-Key Alignment
Eduard Tulchinskii | Laida Kushnareva | Anastasia Voznyuk | Andrei Andriiainen | Irina Piontkovskaya | Evgeny Burnaev | Serguei Barannikov
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) excel at many NLP tasks, yet their multi-step logical reasoning remains unreliable. Existing solutions such as Chain-of-Thought prompting generate intermediate steps but provide no internal check of their logical coherence. In this paper, we use the “QK-score”, a lightweight metric based on query–key alignments within transformer attention heads, to evaluate the logical reasoning capabilities of LLMs. Our method automatically identifies attention heads that play a key role in distinguishing valid from invalid logical inferences, enabling efficient inference-time evaluation via a single forward pass. It reveals latent reasoning structure in LLMs and provides a scalable mechanistic alternative to ablation-based analysis. Across three benchmarks: ProntoQA-OOD, PARARULE-Plus, and MultiLogicEval, with models ranging from 1.5B to 70B parameters, the selected heads predict logical validity up to 14% better than the model probabilities, and remain robust under distractors and increasing reasoning depth of d≤ 6.