Andreas Kruff


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Billie-Newman at SemEval-2023 Task 5: Clickbait Classification and Question Answering with Pre-Trained Language Models, Named Entity Recognition and Rule-Based Approaches
Andreas Kruff | Anh Huy Tran
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

In this paper, we describe the implementations of our systems for the SemEval-2023 Task 5 ‘Clickbait Spoiling’, which involves the classification of clickbait posts in sub-task 1 and the spoiler generation and question answering of clickbait posts in sub-task 2, ultimately achieving a balanced accuracy of 0.593 and a BLEU score of 0.322 on the test datasets in sub-task 1 and sub-task 2 respectively. For this, we propose the usage of RoBERTa transformer models and modify them for each specific downstream task. In sub-task 1, we use the pre-trained RoBERTa model and use it in conjunction with NER, a spoiler-title ratio, a regex check for enumerations and lists and the use of input reformulation. In sub-task 2, we propose the usage of the RoBERTa-SQuAD2.0 model for extractive question answering in combination with a contextual rule-based approach for multi-type spoilers in order to generate spoiler answers.