Amy X Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SPICA: Retrieving Scenarios for Pluralistic In-Context Alignment
Quan Ze Chen | Kevin Feng | Chan Young Park | Amy X Zhang
Findings of the Association for Computational Linguistics: ACL 2025

When different groups’ values differ, one approach to model alignment is to steer models at inference time towards each group’s preferences. However, techniques like in-context learning only consider similarity when drawing few-shot examples and not cross-group differences in values. We propose SPICA, a framework that accounts for group-level differences during in-context example retrieval. SPICA introduces three designs: scenario banks, group-informed retrieval metrics, and in-context alignment prompts. From an evaluation of SPICA on an alignment task collecting inputs from four demographic groups (n = 544), our metrics retrieve in-context examples that more closely match observed preferences, with the best prompt configuration using multiple contrastive responses to demonstrate examples. In an end-to-end evaluation (n = 120), we observe that SPICA is higher rated than similarity-based retrieval, with groups seeing up to a +0.16 point improvement on a 5 point scale. Additionally, gains from SPICA were more uniform, with all groups benefiting from alignment rather than only some. Finally, we find that while a group-agnostic approach can align to aggregated values, it is not most suited for divergent groups.