Amy O’Riordan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Combler les lacunes de Wikipédia : tirer parti de la génération de texte pour améliorer la couverture encyclopédique des groupes sous-représentés
Simon Mille | Massimiliano Pronesti | Craig Thomson | Michela Lorandi | Sophie Fitzpatrick | Rudali Huidrom | Mohammed Sabry | Amy O’Riordan | Anya Belz
Actes des 32ème Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 2 : traductions d'articles publiés

Wikipédia a des lacunes systématiques dans sa couverture des langues peu dotées ainsi que des groupes sous-représentés (par exemple, les femmes). Cet article présente un nouvel outil pour soutenir les efforts visant à combler ces lacunes en générant automatiquement des débuts d’articles en anglais, français et irlandais, et en facilitant la post-édition et la mise en ligne sur Wikipédia. Un générateur basé sur des règles et un LLM sont utilisés pour générer deux articles alternatifs à partir de graphes de connaissances DBpedia ou Wikidata sélectionnés par l’utilisateur, permettant à l’article généré via LLM, souvent plus fluide mais plus sujet aux erreurs, d’être vérifié en termes de contenu par rapport à l’article généré par des règles, plus fiable, mais moins fluide. Le code de l’outil est disponible sur https://github.com/dcu-nlg/wiki-gen-demo et il est actuellement déployé sur http://ec2-18-224-151-90.us-east-2.compute.amazonaws.com:3000/.

2024

pdf bib
Filling Gaps in Wikipedia: Leveraging Data-to-Text Generation to Improve Encyclopedic Coverage of Underrepresented Groups
Simon Mille | Massimiliano Pronesti | Craig Thomson | Michela Lorandi | Sophie Fitzpatrick | Rudali Huidrom | Mohammed Sabry | Amy O’Riordan | Anya Belz
Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations

Wikipedia is known to have systematic gaps in its coverage that correspond to under-resourced languages as well as underrepresented groups. This paper presents a new tool to support efforts to fill in these gaps by automatically generating draft articles and facilitating post-editing and uploading to Wikipedia. A rule-based generator and an input-constrained LLM are used to generate two alternative articles, enabling the often more fluent, but error-prone, LLM-generated article to be content-checked against the more reliable, but less fluent, rule-generated article.