Standard ASR evaluation metrics like Word Error Rate (WER) tend to unfairly penalize morphological and syntactic nuances that do not significantly alter sentence semantics. We introduce an LLM-based scoring rubric LASER that leverages state-of-the-art LLMs’ in-context learning abilities to learn from prompts with detailed examples. Hindi LASER scores using Gemini 2.5 Pro achieved a very high correlation score of 94% with human annotations. Hindi examples in the prompt were also effective in analyzing errors in other Indian languages such as Marathi, Kannada and Malayalam. We also demonstrate how a smaller LLM like Llama 3 can be finetuned on word-pair examples derived from reference and ASR predictions to predict what kind of penalty should be applied with close to 89% accuracy.
Spontaneous or conversational multilingual speech presents many challenges for state-of-the-art automatic speech recognition (ASR) systems. In this work, we present a new technique AMPS, that augments a multilingual multimodal ASR system with paraphrase-based supervision for improved conversational ASR in multiple languages, including Hindi, Marathi, Malayalam, Kannada, and Nyanja. We use paraphrases of the reference transcriptions as additional supervision while training the multimodal ASR model and selectively invoke this paraphrase objective for utterances with poor ASR performance. Using AMPS with a state-of-the-art multimodal model SeamlessM4T, we obtain significant relative reductions in word error rates (WERs) of up to 5%. We present detailed analyses of our system using both objective and human evaluation metrics.
Automatic speech recognition (ASR) for low-resource languages remains a challenge due to the scarcity of labeled training data. Parameter-efficient fine-tuning and text-only adaptation are two popular methods that have been used to address such low-resource settings. In this work, we investigate how these techniques can be effectively combined using a multilingual multimodal model like SeamlessM4T. Multimodal models are able to leverage unlabeled text via text-only adaptation with further parameter-efficient ASR fine-tuning, thus boosting ASR performance. We also show cross-lingual transfer from a high-resource language, achieving up to a relative 17% WER reduction over baseline in an extremely low-resource setting without any labeled speech.