Amrita Bhatia


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
MLModeler5 @ Causal News Corpus 2023: Using RoBERTa for Casual Event Classification
Amrita Bhatia | Ananya Thomas | Nitansh Jain | Jatin Bedi
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

Identifying cause-effect relations plays an integral role in the understanding and interpretation of natural languages. Furthermore, automated mining of causal relations from news and text about socio-political events is a stepping stone in gaining critical insights, including analyzing the scale, frequency and trends across timelines of events, as well as anticipating future ones. The Shared Task 3, part of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE @ RANLP 2023), involved the task of Event Causality Identification with Causal News Corpus. We describe our approach to Subtask 1, dealing with causal event classification, a supervised binary classification problem to annotate given event sentences with whether they contained any cause-effect relations. To help achieve this task, a BERT based architecture - RoBERTa was implemented. The results of this model are validated on the dataset provided by the organizers of this task.