Ammar Joukhadar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
DamascusTeam at NLP4IF2021: Fighting the Arabic COVID-19 Infodemic on Twitter Using AraBERT
Ahmad Hussein | Nada Ghneim | Ammar Joukhadar
Proceedings of the Fourth Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

The objective of this work was the introduction of an effective approach based on the AraBERT language model for fighting Tweets COVID-19 Infodemic. It was arranged in the form of a two-step pipeline, where the first step involved a series of pre-processing procedures to transform Twitter jargon, including emojis and emoticons, into plain text, and the second step exploited a version of AraBERT, which was pre-trained on plain text, to fine-tune and classify the tweets with respect to their Label. The use of language models pre-trained on plain texts rather than on tweets was motivated by the necessity to address two critical issues shown by the scientific literature, namely (1) pre-trained language models are widely available in many languages, avoiding the time-consuming and resource-intensive model training directly on tweets from scratch, allowing to focus only on their fine-tuning; (2) available plain text corpora are larger than tweet-only ones, allowing for better performance.