Amit Kumar Jena


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
C-Net: Contextual Network for Sarcasm Detection
Amit Kumar Jena | Aman Sinha | Rohit Agarwal
Proceedings of the Second Workshop on Figurative Language Processing

Automatic Sarcasm Detection in conversations is a difficult and tricky task. Classifying an utterance as sarcastic or not in isolation can be futile since most of the time the sarcastic nature of a sentence heavily relies on its context. This paper presents our proposed model, C-Net, which takes contextual information of a sentence in a sequential manner to classify it as sarcastic or non-sarcastic. Our model showcases competitive performance in the Sarcasm Detection shared task organised on CodaLab and achieved 75.0% F1-score on the Twitter dataset and 66.3% F1-score on Reddit dataset.