This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AmitAgarwal
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Despite Southeast Asia’s (SEA) extraordinary linguistic and cultural diversity, the region remains significantly underrepresented in vision-language (VL) research, resulting in AI models that inadequately capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing culturally relevant high-quality datasets for SEA languages. By involving contributors from SEA countries, SEA-VL ensures better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages and cultural depictions in VL research. Our methodology employed three approaches: community-driven crowdsourcing with SEA contributors, automated image crawling, and synthetic image generation. We evaluated each method’s effectiveness in capturing cultural relevance. We found that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing, whereas synthetic image generation failed to accurately reflect SEA cultural nuances and contexts. Collectively, we gathered 1.28 million SEA culturally relevant images, more than 50 times larger than other existing datasets. This work bridges the representation gap in SEA, establishes a foundation for developing culturally aware AI systems for this region, and provides a replicable framework for addressing representation gaps in other underrepresented regions.
Enterprise search systems often struggle to retrieve accurate, domain-specific information due to semantic mismatches and overlapping terminologies. These issues can degrade the performance of downstream applications such as knowledge management, customer support, and retrieval-augmented generation agents. To address this challenge, we propose a scalable hard-negative mining framework tailored specifically for domain-specific enterprise data. Our approach dynamically selects semantically challenging but contextually irrelevant documents to enhance deployed re-ranking models.Our method integrates diverse embedding models, performs dimensionality reduction, and uniquely selects hard negatives, ensuring computational efficiency and semantic precision. Evaluation on our proprietary enterprise corpus (cloud services domain) demonstrates substantial improvements of 15% in MRR@3 and 19% in MRR@10 compared to state-of-the-art baselines and other negative sampling techniques. Further validation on public domain-specific datasets (FiQA, Climate Fever, TechQA) confirms our method’s generalizability and readiness for real-world applications.
In this work, we propose Few Shot Domain Adapting Graph (FS-DAG), a scalable and efficient model architecture for visually rich document understanding (VRDU) in few-shot settings. FS-DAG leverages domain-specific and language/vision specific backbones within a modular framework to adapt to diverse document types with minimal data. The model is robust to practical challenges such as handling OCR errors, misspellings, and domain shifts, which are critical in real-world deployments. FS-DAG is highly performant with less than 90M parameters, making it well-suited for complex real-world applications for Information Extraction (IE) tasks where computational resources are limited. We demonstrate FS-DAG’s capability through extensive experiments for information extraction task, showing significant improvements in convergence speed and performance compared to state-of-the-art methods. Additionally, this work highlights the ongoing progress in developing smaller, more efficient models that do not compromise on performance.
Large Language Models (LLMs) are increasingly deployed across diverse domains but often exhibit disparities in how they handle real life queries. To systematically investigate these effects with various disability context, we introduce AccessEval, a large-scale benchmark evaluating total 21 close & open source LLMs across six real-world domains and nine disability types using paired Neutral and Disability-Aware Queries. We evaluated model outputs with metrics for factual accuracy, sentiment, and social perception.Our analysis reveals that responses to disability-aware queries tend to have higher factual error, more negative tone, and increased stereotyping with social perception compared to neutral queries. These effects show notable variation by domain and disability type. Disabilities affecting hearing, speech and mobility are disproportionately impacted. These disparities reveal persistent forms of ableism, highlighting the need for more comprehensive and nuanced assessment.We further argue that framing bias in terms of model performance within real-world decision making helps to better link model behaviors to the potential harms users may face. This approach guides the development of more effective and tailored fairness interventions. AccessEval, therefore, serves as a crucial tool for advancing equitable and inclusive language technologies.
Large language models (LLMs) remain unreliable for global enterprise applications due to substantial performance gaps between high-resource and mid/low-resource languages, driven by English-centric pretraining and internal reasoning biases. This inconsistency undermines customer experience and operational reliability in multilingual settings such as customer support, content moderation, and information retrieval. Even with advanced Retrieval-Augmented Generation (RAG) systems, we observe up to an 29% accuracy drop in non-English languages compared to English.We propose a practical, batch-wise alignment strategy for fine-tuning LLMs, leveraging semantically equivalent multilingual data in each training batch to directly align model outputs across languages. This approach improves non-English accuracy by up to 23.9% without compromising English performance, model reasoning, or retrieval quality. Our method is simple to implement, scalable, and integrates seamlessly with existing LLM training & deployment pipelines, enabling more robust and equitable multilingual AI solutions in industry.
Multimodal Large Language Models (MLLMs) have achieved impressive results on vision-language benchmarks, yet it remains unclear whether these benchmarks assess genuine global reasoning or allow success via localized visual cues. Existing evaluation methods do not explicitly measure this distinction, hindering effective dataset curation and real-world focused model development.We introduce Region Comprehension Index (RCI), the first model-based score to directly quantify a dataset’s reliance on global versus local visual information. RCI systematically compares reference-model performance on image patches versus full images, revealing if tasks require holistic image understanding or can be solved with partial or localized visual cues.When applying RCI to 13 widely used multimodal benchmarks, we observed that most of them favor localized reasoning and exhibit significant spatial biases, indicating potential risks in real-world applications. RCI equips researchers & practitioners with an actionable tool for diagnosing & mitigating these biases, enabling the construction of datasets and benchmarks to foster the development of robust, enterprise-ready multimodal systems.
The reliability of Multimodal Large Language Models (MLLMs) in real-world settings is often undermined by sensitivity to irrelevant or distracting visual context, an aspect not captured by existing evaluation metrics. We introduce the Patch Context Robustness Index (PCRI), the first systematic and interpretable score for quantifying MLLM robustness to variations in visual context granularity, measuring performance changes between localized image patches and full-image input.Applying PCRI to 19 state-of-the-art MLLMs across 15 vision-language benchmarks, we find that most leading models remain brittle to background noise, with only a few, such as InternVL2-26B and Qwen2VL-72B, demonstrating consistent robustness across tasks. PCRI analysis also highlights how different model architectures handle and integrate visual context, offering actionable diagnostic insight for both researchers and practitioners.PCRI enables rigorous comparison of context robustness, supporting principled model selection and guiding the development of future architectures and training strategies for robust, real-world deployment.
In modern industry systems like multi-turn chat agents, Text-to-SQL technology bridges natural language (NL) questions and database (DB) querying. The conversion of tabular DB results into NL representations (NLRs) enables the chat-based interaction. Currently, NLR generation is typically handled by large language models (LLMs), but information loss or errors in presenting tabular results in NL remains largely unexplored.This paper introduces a novel evaluation method - Combo-Eval - for judgment of LLM-generated NLRs that combines the benefits of multiple existing methods, optimizing evaluation fidelity and achieving a significant reduction in LLM calls by 25-61%. Accompanying our method is NLR-BIRD, the first dedicated dataset for NLR benchmarking. Through human evaluations, we demonstrate the superior alignment of Combo-Eval with human judgments, applicable across scenarios with and without ground truth references.
Developing document understanding models at enterprise scale requires large, diverse, and well-annotated datasets spanning a wide range of document types. However, collecting such data is prohibitively expensive due to privacy constraints, legal restrictions, and the sheer volume of manual annotation needed - costs that can scale into millions of dollars. We introduce FlexDoc, a scalable synthetic data generation framework that combines Stochastic Schemas and Parameterized Sampling to produce realistic, multilingual semi-structured documents with rich annotations. By probabilistically modeling layout patterns, visual structure, and content variability, FlexDoc enables the controlled generation of diverse document variants at scale. Experiments on Key Information Extraction (KIE) tasks demonstrate that FlexDoc-generated data improves the absolute F1 Score by up to 11% when used to augment real datasets, while reducing annotation effort by over 90% compared to traditional hard-template methods. The solution is in active deployment, where it has accelerated the development of enterprise-grade document understanding models while significantly reducing data acquisition and annotation costs.
Multimodal Large Language Models (MLLMs), are recent advancement of Vision-Language Models (VLMs) that have driven major advances in video understanding. However, their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce MVTamperBench, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping; based on real-world visual tampering scenarios such as surveillance interference, social media content edits, and misinformation injection. MVTamperBench comprises ~3.4K original videos, expanded into over ~17K tampered clips covering 19 distinct video manipulation tasks. This benchmark challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families. We reveal substantial variability in resilience across tampering types and show that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code, data, and benchmark to foster open research in trustworthy video understanding.
This paper explores the use of large language models (LLMs) and prompt engineering to detect causal relationships in financial disclosures. The task was part of the FinCausal 2025 shared competition, which focuses on identifying cause-and-effect relationships in financial texts across languages. The study demonstrates the effectiveness of LLMs, specifically LLaMA 3.2, in tackling causality detection in English and Spanish financial reports. The paper introduces various prompt engineering techniques, including zero-shot, few-shot, and chain-of-thought (CoT) prompting, to improve performance. For English, the best results were achieved using the Few-Shot + CoT approach, while for Spanish, the Few-Shot method provided strong semantic alignment despite lower exact match accuracy. The evaluation used two metrics: Exact Match (EM) and Semantic Alignment Score (SAS). The results showed high SAS scores for both languages, indicating good semantic understanding, with English performing particularly well. The study emphasizes the importance of tailored prompt engineering techniques to handle language-specific nuances in financial contexts and suggests future research directions, including fine-tuning LLaMA 3.2 and testing additional LLM architectures to enhance multilingual causality detection in financial texts.
Retrieval-Augmented Generation (RAG) systems and large language model (LLM)-powered chatbots have significantly advanced conversational AI by combining generative capabilities with external knowledge retrieval. Despite their success, enterprise-scale deployments face critical challenges, including diverse user queries, high latency, hallucinations, and difficulty integrating frequently updated domain-specific knowledge. This paper introduces a novel hybrid framework that integrates RAG with intent-based canned responses, leveraging predefined high-confidence responses for efficiency while dynamically routing complex or ambiguous queries to the RAG pipeline. Our framework employs a dialogue context manager to ensure coherence in multi-turn interactions and incorporates a feedback loop to refine intents, dynamically adjust confidence thresholds, and expand response coverage over time. Experimental results demonstrate that the proposed framework achieves a balance of high accuracy (95%) and low latency (180ms), outperforming RAG and intent-based systems across diverse query types, positioning it as a scalable and adaptive solution for enterprise conversational AI applications.
Enterprise customers are increasingly adopting Large Language Models (LLMs) for critical communication tasks, such as drafting emails, crafting sales pitches, and composing casual messages. Deploying such models across different regions requires them to understand diverse cultural and linguistic contexts and generate safe and respectful responses. For enterprise applications, it is crucial to mitigate reputational risks, maintain trust, and ensure compliance by effectively identifying and handling unsafe or offensive language. To address this, we introduce SweEval, a benchmark simulating real-world scenarios with variations in tone (positive or negative) and context (formal or informal). The prompts explicitly instruct the model to include specific swear words while completing the task. This benchmark evaluates whether LLMs comply with or resist such inappropriate instructions and assesses their alignment with ethical frameworks, cultural nuances, and language comprehension capabilities. In order to advance research in building ethically aligned AI systems for enterprise use and beyond, we release the dataset and code: https://github.com/amitbcp/multilingual_profanity.
Agriculture, vital for global sustenance, necessitates innovative solutions due to a lack of organized domain experts, particularly in developing countries where many farmers are impoverished and cannot afford expert consulting. Initiatives like Farmers Helpline play a crucial role in such countries, yet challenges such as high operational costs persist. Automating query resolution can alleviate the burden on traditional call centers, providing farmers with immediate and contextually relevant information.The integration of Agriculture and Artificial Intelligence (AI) offers a transformative opportunity to empower farmers and bridge information gaps.Language models like transformers, the rising stars of AI, possess remarkable language understanding capabilities, making them ideal for addressing information gaps in agriculture.This work explores and demonstrates the transformative potential of Large Language Models (LLMs) in automating query resolution for agricultural farmers, leveraging their expertise in deciphering natural language and understanding context. Using a subset of a vast dataset of real-world farmer queries collected in India, our study focuses on approximately 4 million queries from the state of Tamil Nadu, spanning various sectors, seasonal crops, and query types.
This paper outlines the methodology for the automatic extraction of self-reported ages from social media posts as part of the Social Media Mining for Health (SMM4H) 2024 Workshop Shared Tasks. The focus was on Task 6: “Self-reported exact age classification with cross-platform evaluation in English.” The goal was to accurately identify age-related information from user-generated content, which is crucial for applications in public health monitoring, targeted advertising, and demographic research. A number of transformer-based models were employed, including RoBERTa-Base, BERT-Base, BiLSTM, and Flan T5 Base, leveraging their advanced capabilities in natural language understanding. The training strategies included fine-tuning foundational pre-trained language models and evaluating model performance using standard metrics: F1-score, Precision, and Recall. The experimental results demonstrated that the RoBERTa-Base model significantly outperformed the other models in this classification task. The best results achieved with the RoBERTa-Base model were an F1-score of 0.878, a Precision of 0.899, and a Recall of 0.858.