Amir Kantor


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
A Systematic Study of Knowledge Distillation for Natural Language Generation with Pseudo-Target Training
Nitay Calderon | Subhabrata Mukherjee | Roi Reichart | Amir Kantor
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Modern Natural Language Generation (NLG) models come with massive computational and storage requirements. In this work, we study the potential of compressing them, which is crucial for real-world applications serving millions of users. We focus on Knowledge Distillation (KD) techniques, in which a small student model learns to imitate a large teacher model, allowing to transfer knowledge from the teacher to the student. In contrast to much of the previous work, our goal is to optimize the model for a specific NLG task and a specific dataset. Typically in real-world applications, in addition to labeled data there is abundant unlabeled task-specific data, which is crucial for attaining high compression rates via KD. In this work, we conduct a systematic study of task-specific KD techniques for various NLG tasks under realistic assumptions. We discuss the special characteristics of NLG distillation and particularly the exposure bias problem. Following, we derive a family of Pseudo-Target (PT) augmentation methods, substantially extending prior work on sequence-level KD. We propose the Joint-Teaching method, which applies word-level KD to multiple PTs generated by both the teacher and the student. Finally, we validate our findings in an extreme setup with no labeled examples using GPT-4 as the teacher. Our study provides practical model design observations and demonstrates the effectiveness of PT training for task-specific KD in NLG.

2021

pdf bib
Automatic Rephrasing of Transcripts-based Action Items
Amir Cohen | Amir Kantor | Sagi Hilleli | Eyal Kolman
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021