This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AmelFraisse
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The documentation, protection and dissemination of Intangible Cultural Heritage (ICH) in the digital age pose significant theoretical, technological and legal challenges. Through a multidisciplinary lens, this paper presents new approaches for collecting, documenting, encrypting and protecting ICH-related data for more ethical circulation. Human-movement recognition technologies such as motion capture, allows for the recording, extraction and reproduction of human movement with unprecedented precision. The once indistinguishable or hard-to-trace reproduction of dance steps between their creators and unauthorized third parties becomes patent through the transmission of embodied knowledge, but in the form of data. This new battlefield prompted by digital technologies only adds to the disputes within the creative industries, in terms of authorship, ownership and commodification of body language. For the sake of this paper, we are aiming to disentangle the various layers present in the process of digitisation of the dancing body, to identify its by-products as well as the possible arising ownership rights that might entail. ”Who owns what?”, the basic premise of intellectual property law, is transposed, in this case, onto the various types of data generated when intangible cultural heritage, in the form of dance, is digitised through motion capture and encrypted with blockchain technologies.
TL-Explorer is a digital humanities tool for mapping and analyzing translated literature, encompassing the World Map and the Translation Dashboard. The World Map displays collected literature of different languages, locations, and cultures and establishes the foundation for further analysis. It comprises three global maps for spatial and temporal interpretation. A further investigation into an individual point on the map leads to the Translation Dashboard. Each point represents one edition or translation. Collected translations are processed in order to build multilingual parallel corpora for a large number of under-resourced languages as well as to highlight the transnational circulation of knowledge. Our first rendition of TL-Explorer was conducted on the well-traveled American novel, Adventures of Huckleberry Finn, by Mark Twain. The maps currently chronicle nearly 400 translations of this novel. And the dashboard supports over 30 collected translations. However, the TL-Explore is easily extended to other works of literature and is not limited to type of texts, such as academic manuscripts or constitutional documents to name a few.
Cet article présente l’édition 2018 de la campagne d’évaluation DEFT (Défi Fouille de Textes). A partir d’un corpus de tweets, quatre tâches ont été proposées : identifier les tweets sur la thématique des transports, puis parmi ces derniers, identifier la polarité (négatif, neutre, positif, mixte), identifier les marqueurs de sentiment et la cible, et enfin, annoter complètement chaque tweet en source et cible des sentiments exprimés. Douze équipes ont participé, majoritairement sur les deux premières tâches. Sur l’identification de la thématique des transports, la micro F-mesure varie de 0,827 à 0,908. Sur l’identification de la polarité globale, la micro F-mesure varie de 0,381 à 0,823.
Bien que les interjections soient un phénomène linguistique connu, elles ont été peu étudiées et cela continue d’être le cas pour les travaux sur les microblogs. Des travaux en analyse de sentiments ont montré l’intérêt des émoticônes et récemment des mots-dièses, qui s’avèrent être très utiles pour la classification en polarité. Mais malgré leur statut grammatical et leur richesse sémantique, les interjections sont restées marginalisées par les systèmes d’analyse de sentiments. Nous montrons dans cet article l’apport majeur des interjections pour la détection des émotions. Nous détaillons la production automatique, basée sur les interjections, d’un corpus étiqueté avec les émotions. Nous expliquons ensuite comment nous avons utilisé ce corpus pour en déduire, automatiquement, un lexique affectif pour le français. Ce lexique a été évalué sur une tâche de détection des émotions, qui a montré un gain en mesure F1 allant, selon les émotions, de +0,04 à +0,21.
This paper presents a logical formalization of a set 20 semantic categories related to opinion, emotion and sentiment. Our formalization is based on the BDI model (Belief, Desire and Intetion) and constitues a first step toward a unifying model for subjective information extraction. The separability of the subjective classes that we propose was assessed both formally and on two subjective reference corpora.