Amaury Habrard


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
Dict2vec : Learning Word Embeddings using Lexical Dictionaries
Julien Tissier | Christophe Gravier | Amaury Habrard
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Learning word embeddings on large unlabeled corpus has been shown to be successful in improving many natural language tasks. The most efficient and popular approaches learn or retrofit such representations using additional external data. Resulting embeddings are generally better than their corpus-only counterparts, although such resources cover a fraction of words in the vocabulary. In this paper, we propose a new approach, Dict2vec, based on one of the largest yet refined datasource for describing words – natural language dictionaries. Dict2vec builds new word pairs from dictionary entries so that semantically-related words are moved closer, and negative sampling filters out pairs whose words are unrelated in dictionaries. We evaluate the word representations obtained using Dict2vec on eleven datasets for the word similarity task and on four datasets for a text classification task.

2009

pdf bib
A Note on Contextual Binary Feature Grammars
Alexander Clark | Rémi Eyraud | Amaury Habrard
Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference