Allen Williams


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Data Quality Estimation Framework for Faster Tax Code Classification
Ravi Kondadadi | Allen Williams | Nicolas Nicolov
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

This paper describes a novel framework to estimate the data quality of a collection of product descriptions to identify required relevant information for accurate product listing classification for tax-code assignment. Our Data Quality Estimation (DQE) framework consists of a Question Answering (QA) based attribute value extraction model to identify missing attributes and a classification model to identify bad quality records. We show that our framework can accurately predict the quality of product descriptions. In addition to identifying low-quality product listings, our framework can also generate a detailed report at a category level showing missing product information resulting in a better customer experience.