Allen Minchun Hsiao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Annotating English Verb-Argument Structure via Usage-Based Analogy
Allen Minchun Hsiao | Laura A. Michaelis
Proceedings of the Second International Workshop on Construction Grammars and NLP

This paper introduces a usage-based framework that models argument structure annotation as nearest-neighbor classification over verb–argument structure (VAS) embeddings. Instead of parsing sentences separately, the model aligns new tokens with previously observed constructions in an embedding space derived from semi-automatic corpus annotations. Pilot studies show that cosine similarity captures both form and meaning, that nearest-neighbor classification generalizes to dative alternation verbs, and that accuracy in locative alternation depends on the corpus source of exemplars. These results suggest that analogical classification is shaped by both structural similarity and corpus alignment, highlighting key considerations for scalable, construction-based annotation of new sentence inputs.