Ali Sarosh Bangash


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MuseScorer: Idea Originality Scoring At Scale
Ali Sarosh Bangash | Krish Veera | Ishfat Abrar Islam | Raiyan Abdul Baten
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

An objective, face-valid method for scoring idea originality is to measure each idea’s statistical infrequency within a population—an approach long used in creativity research. Yet, computing these frequencies requires manually bucketing idea rephrasings, a process that is subjective, labor-intensive, error-prone, and brittle at scale. We introduce MuseScorer, a fully automated, psychometrically validated system for frequency-based originality scoring. MuseScorer integrates a Large Language Model (LLM) with externally orchestrated retrieval: given a new idea, it retrieves semantically similar prior idea-buckets and zero-shot prompts the LLM to judge whether the idea fits an existing bucket or forms a new one. These buckets enable frequency-based originality scoring without human annotation. Across five datasets (Nparticipants=1143, nideas=16,294), MuseScorer matches human annotators in idea clustering structure (AMI =0.59) and participant-level scoring (r = 0.89), while demonstrating strong convergent and external validity. The system enables scalable, intent-sensitive, and human-aligned originality assessment for creativity research.