Alexis Castellanos


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Identifying Medication Abuse and Adverse Effects from Tweets: University of Michigan at #SMM4H 2020
V.G.Vinod Vydiswaran | Deahan Yu | Xinyan Zhao | Ermioni Carr | Jonathan Martindale | Jingcheng Xiao | Noha Ghannam | Matteo Althoen | Alexis Castellanos | Neel Patel | Daniel Vasquez
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task

The team from the University of Michigan participated in three tasks in the Social Media Mining for Health Applications (#SMM4H) 2020 shared tasks – on detecting mentions of adverse effects (Task 2), extracting and normalizing them (Task 3), and detecting mentions of medication abuse (Task 4). Our approaches relied on a combination of traditional machine learning and deep learning models. On Tasks 2 and 4, our submitted runs performed at or above the task average.