Alexia Halvorsen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Bias assessment for experts in discrimination, not in computer science
Laura Alonso Alemany | Luciana Benotti | Hernán Maina | Lucía Gonzalez | Lautaro Martínez | Beatriz Busaniche | Alexia Halvorsen | Amanda Rojo | Mariela Rajngewerc
Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP)

Approaches to bias assessment usually require such technical skills that, by design, they leave discrimination experts out. In this paper we present EDIA, a tool that facilitates that experts in discrimination explore social biases in word embeddings and masked language models. Experts can then characterize those biases so that their presence can be assessed more systematically, and actions can be planned to address them. They can work interactively to assess the effects of different characterizations of bias in a given word embedding or language model, which helps to specify informal intuitions in concrete resources for systematic testing.