This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
AlessandraPascale
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Extracting scientific evidence from biomedical studies for clinical research questions (e.g., Does stem cell transplantation improve quality of life in patients with medically refractory Crohn’s disease compared to placebo?) is a crucial step in synthesising biomedical evidence. In this paper, we focus on the task of document-level scientific evidence extraction for clinical questions with conflicting evidence. To support this task, we create a dataset called CochraneForest leveraging forest plots from Cochrane systematic reviews. It comprises 202 annotated forest plots, associated clinical research questions, full texts of studies, and study-specific conclusions. Building on CochraneForest, we propose URCA (Uniform Retrieval Clustered Augmentation), a retrieval-augmented generation framework designed to tackle the unique challenges of evidence extraction. Our experiments show that URCA outperforms the best existing methods by up to 10.3% in F1 score on this task. However, the results also underscore the complexity of CochraneForest, establishing it as a challenging testbed for advancing automated evidence synthesis systems.
Large language models (LLMs) have achieved remarkable success in generative tasks, yet they often fall short in ensuring the factual accuracy of their outputs thus limiting their reliability in real-world applications where correctness is critical. In this paper, we present FactReasoner, a novel neuro-symbolic based factuality assessment framework that employs probabilistic reasoning to evaluate the truthfulness of long-form generated responses. FactReasoner decomposes a response into atomic units, retrieves relevant contextual information from external knowledge sources, and models the logical relationships (e.g., entailment, contradiction) between these units and their contexts using probabilistic encodings. It then estimates the posterior probability that each atomic unit is supported by the retrieved evidence. Our experiments on both labeled and unlabeled benchmark datasets demonstrate that FactReasoner often outperforms state-of-the-art prompt-based methods in terms of factual precision and recall.
Due to the fast pace at which research reports in behaviour change are published, researchers, consultants and policymakers would benefit from more automatic ways to process these reports. Automatic extraction of the reports’ intervention content, population, settings and their results etc. are essential in synthesising and summarising the literature. However, to the best of our knowledge, no unique resource exists at the moment to facilitate this synthesis. In this paper, we describe the construction of a corpus of published behaviour change intervention evaluation reports aimed at smoking cessation. We also describe and release the annotation of 57 entities, that can be used as an off-the-shelf data resource for tasks such as entity recognition, etc. Both the corpus and the annotation dataset are being made available to the community.