Alena Lisevych


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
ProConSuL: Project Context for Code Summarization with LLMs
Vadim Lomshakov | Andrey Podivilov | Sergey Savin | Oleg Baryshnikov | Alena Lisevych | Sergey Nikolenko
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

We propose Project Context for Code Summarization with LLMs (ProConSuL), a new framework to provide a large language model (LLM) with precise information about the code structure from program analysis methods such as a compiler or IDE language services and use task decomposition derived from the code structure. ProConSuL builds a call graph to provide the context from callees and uses a two-phase training method (SFT + preference alignment) to train the model to use the project context. We also provide a new evaluation benchmark for C/C++ functions and a set of proxy metrics. Experimental results demonstrate that ProConSuL allows to significantly improve code summaries and reduce the number of hallucinations compared to the base model (CodeLlama-7B-instruct). We make our code and dataset available at https://github.com/TypingCat13/ProConSuL.