Aleksey Kudelya


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Lacuna Inc. at SemEval-2025 Task 4: LoRA-Enhanced Influence-Based Unlearning for LLMs
Aleksey Kudelya | Alexander Shirnin
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

This paper describes LIBU (LoRA enhanced influence-based unlearning), an algorithm to solve the task of unlearning - removing specific knowledge from a large language model without retraining from scratch and compromising its overall utility (SemEval-2025 Task 4: Unlearning sensitive content from Large Language Models). The algorithm combines classical influence functions to remove the influence of thedata from the model and second-order optimization to stabilize the overall utility. Our experiments show that this lightweight approach is well applicable for unlearning LLMs in different kinds of task.