Alberto Gasparin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Distance-aware Calibration for Pre-trained Language Models
Alberto Gasparin | Gianluca Detommaso
Findings of the Association for Computational Linguistics: EMNLP 2024

Language Models for text classification often produce overconfident predictions for both in-distribution and out-of-distribution samples, i.e., the model’s output probabilities do not match their accuracy. Prior work showed that simple post-hoc approaches are effective for mitigating this issue, but are not robust in noisy settings, e.g., when the distribution shift is caused by spelling mistakes. In this work, we propose Distance Aware Calibration (DAC), a post-hoc approach that changes the confidence scores of a Language Model leveraging the distance between new samples been evaluated and the in-domain training set. We show that using DAC on top of a Language Model can improve in-domain calibration, robustness to different kind of distribution shift and also the model’s ability to detect out-of-distribution samples. We provide an extensive evaluation on common text classification benchmark for both calibration and out-of-distribution detection tasks.