Albert C. Chen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ProCut: LLM Prompt Compression via Attribution Estimation
Zhentao Xu | Fengyi Li | Albert C. Chen | Xiaofeng Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

In large-scale industrial LLM systems, prompt templates often expand to thousands of tokens as teams iteratively incorporate sections such as task instructions, few-shot examples, and heuristic rules to enhance robustness and coverage. This expansion leads to bloated prompts that are difficult to maintain and incur significant inference latency and serving costs. To address this, we introduce Prompt Compression via Attribution Estimation (ProCut), a flexible, LLM-agnostic, training-free framework that compresses prompts through attribution analysis. ProCut segments prompt templates into semantically meaningful units, quantifies their impact on task performance, and prunes low-utility components. Through extensive experiments on five public benchmark datasets and real-world industrial prompts, we show that ProCut achieves substantial prompt size reductions (78% fewer tokens in production) while maintaining or even slightly improving task performance (up to 62% better than alternative methods). We further introduce an LLM-driven attribution estimator that reduces compression latency by over 50%, and demonstrate that ProCut integrates seamlessly with existing prompt-optimization frameworks to produce concise, high-performing prompts.