Ala Al-Fuqaha


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
AlphaBrains at WojoodNER shared task: Arabic Named Entity Recognition by Using Character-based Context-Sensitive Word Representations
Toqeer Ehsan | Amjad Ali | Ala Al-Fuqaha
Proceedings of ArabicNLP 2023

This paper presents Arabic named entity recognition models by employing the single-task and the multi-task learning paradigms. The models have been developed using character-based contextualized Embeddings from Language Model (ELMo) in the input layers of the bidirectional long-short term memory networks. The ELMo embeddings are quite capable of learning the morphology and contextual information of the tokens in word sequences. The single-task learning models outperformed the multi-task learning models and achieved micro F1-scores of 0.8751 and 0.8884 for the flat and nested annotations, respectively.