Akshita Gheewala


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
PSILENCE: A Pseudonymization Tool for International Law
Luis Adrián Cabrera-Diego | Akshita Gheewala
Proceedings of the Workshop on Computational Approaches to Language Data Pseudonymization (CALD-pseudo 2024)

Since the announcement of the GDPR, the pseudonymization of legal documents has become a high-priority task in many legal organizations. This means that for making public a document, it is necessary to redact the identity of certain entities, such as witnesses. In this work, we present the first results obtained by PSILENCE, a pseudonymization tool created for redacting semi-automatically international arbitration documents in English. PSILENCE has been built using a Named Entity Recognition (NER) system, along with a Coreference Resolution system. These systems allow us to find the people that we need to redact in a clustered way, but also to propose the same pseudonym throughout one document. This last aspect makes it easier to read and comprehend a redacted legal document. Different experiments were done on four different datasets, one of which was legal, and the results are promising, reaching a Macro F-score of up to 0.72 on the legal dataset.

2023

pdf bib
Jus Mundi at SemEval-2023 Task 6: Using a Frustratingly Easy Domain Adaption for a Legal Named Entity Recognition System
Luis Adrián Cabrera-Diego | Akshita Gheewala
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

In this work, we present a Named Entity Recognition (NER) system that was trained using a Frustratingly Easy Domain Adaptation (FEDA) over multiple legal corpora. The goal was to create a NER capable of detecting 14 types of legal named entities in Indian judgments. Besides the FEDA architecture, we explored a method based on overlapping context and averaging tensors to process long input texts, which can be beneficial when processing legal documents. The proposed NER reached an F1-score of 0.9007 in the sub-task B of Semeval-2023 Task 6, Understanding Legal Texts.