Akshay Shekher


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Dynamic Strategy Planning for Efficient Question Answering with Large Language Models
Tanmay Parekh | Pradyot Prakash | Alexander Radovic | Akshay Shekher | Denis Savenkov
Findings of the Association for Computational Linguistics: NAACL 2025

Research has shown an effectiveness of reasoning (e.g. Chain-of-Thought), planning (e.g. SelfAsk) and retrieval augmented generation strategies to improve performance of Large Language Models (LLMs) on various tasks, such as question answering. However, using a single fixed strategy for answering all different kinds of questions is sub-optimal in performance and inefficient in terms of generated tokens and retrievals. In our work, we propose a novel technique, DyPlan, to induce a dynamic strategy selection process in LLMs for cost-effective question-answering. DyPlan incorporates an initial decision step to select the most suitable strategy conditioned on the input question and guides the LLM’s response generation accordingly. We extend DyPlan to DyPlan-verify, adding an internal verification and correction process to further enrich the generated answer. Experimentation on three prominent multi-hop question answering (MHQA) datasets reveals how DyPlan can improve model performance by 7-13% while reducing the cost by 11-32% relative to the best baseline model.