Akshar Kaul


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Quality Assessment of Tabular Data using Large Language Models and Code Generation
Ashlesha Akella | Akshar Kaul | Krishnasuri Narayanam | Sameep Mehta
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Reliable data quality is crucial for downstream analysis of tabular datasets, yet rule-based validation often struggles with inefficiency, human intervention, and high computational costs. We present a three-stage framework that combines statistical inliner detection with LLM-driven rule and code generation. After filtering data samples through traditional clustering, we iteratively prompt LLMs to produce semantically valid quality rules and synthesize their executable validators through code-generating LLMs. To generate reliable quality rules, we aid LLMs with retrieval-augmented generation (RAG) by leveraging external knowledge sources and domain-specific few-shot examples. Robust guardrails ensure the accuracy and consistency of both rules and code snippets. Extensive evaluations on benchmark datasets confirm the effectiveness of our approach.